

Eoliennes, hydroliennes et turbomachines

Niveau L3 - Semestre S6 - Crédits 3 ECTS - Code LU3ME108 - Mention Licence mécanique

Présentation pédagogique:

Cette UE a comme objectif de donner aux étudiants les principes du fonctionnement des éoliennes et hydroliennes, sur la base de la dynamique des fluides des turbomachines.

Cont	enu de l'Unité d'Enseignement:
	Energie du vent, des courants marins et des marées. Développement des éoliennes.
	Théorie de volume de contrôle quec pertes et effets de mélange, approximations conduisant à la théorie de Betz.
	Méthode d'éléments d'aube (BEM) et applications à l'analyse du fonctionnement des éoliennes.
	Notions fondamentales d'aérodynamique des turbomachines: application à l'aérodynamique des éoliennes (repères
	absolu et relatif, puissance échangée entre le vent et le rotor, écoulements méridien et aube-à-aube, équilibre radial,
	modèles simplifiés d'écoulement à travers un rotor (S1-S2 ou disque actuateur), tourbillons d'extrêmité, interaction
	avec le pylone).
	Caractéristiques statistiques du vent et application à l'estimation de production d'énergie.
	Problèmes de dimensionnement mécanique, interférences électromagnétiques, et notions de transformation,
	stockage et transmission de l'énergie électrique.
	Similitudes et différences des hydroliennes.
	Différentes conceptions classiques et exotiques.
	Travaux pratiques : Mini-projet (avec suivi organisé en 3 séances de TP numériques) de conception avant-projet de différentes configurations, utilisant des logiciels spécifiques freeware avec interface graphique (http://sourceforge.net/projects/aerodynamics/).
Pré-ı	requis:
Base	s de la Mécanique des Fluides acquises en S4 et en parallèle avec le module en S6.
Réfé	rences bibliographiques:
	Gerolymos G.A., Vallet I.: Wind Turbine Aerodynamics (2016) in print

Ressources mises à disposition des étudiants:

Connaissances scientifiques développées dans l'unité:

Compétences développées dans l'unité:

Introduction à l'énergie éolienne, application des connaissances en mécanique des fluides à un problème réel d'engineering et de CAO avant-projet.

Volumes horaires présentiel et hors présentiel:

Heures présentielles totales: 27h réparties en 9h de CM, 9h de TD, 9h de TP/projet numérique. Travail personnel attendu :

Burton T., Sharpe D., Jenkins N., Bossanyi E.: Wind Energy Handbook (2001) Wiley, Chichester [UK]

Évaluation:

Évaluation sur la base de: 1 écrit (2h ; 60 %) + 1 projet (40%)

Responsable: Georges Gerolymos (georges.gerolymos@sorbonne-universite.fr)

Hansen M.O.L.: Aerodynamics of Wind Turbines (2008) Earthscan, London [UK]

Spera D.A.: Wind Turbine Technology (1994) ASME, New York [NY, USA]